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ABSTRACT

Communicating failure mode information during design and
manufacturing is a crucial task for failure prevention. Most pro-
cesses use Failure Modes and Effects types of analyses, as well
as prior knowledge and experience, to determine the potential
modes of failures a product might encounter during its lifetime.
When new products are being considered and designed, this
knowledge and information is expanded upon to help designers
extrapolate based on their similarity with existing products and
the potential design tradeoffs. This paper makes use of similari-
ties and tradeoffs that exist between different failure modes based
on the functionality of each component/product. In this light, a
function-failure method is developed to help the design of new
products with solutions for functions that eliminate or reduce the
potential of a failure mode. The method is applied to a simplified
rotating machinery example in this paper, and is proposed as a
means to account for helicopter failure modes during design and
production, addressing stringent safety and performance require-
ments for NASA applications.
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COMPONENT FAILURES AND FUNCTIONALITY
Failures in rotating machinery components in high-risk

aerospace applications present unacceptable safety and perfor-
mance problems. In this work, methods to understand and pre-
dict the potential failure modes are viewed as essential to advanc-
ing the field of fault monitoring and failure prevention. A novel
approach is presented as a potential design-aid tool to help with
this goal, by exploring the relationship between failure modes
and the functionality of components. The underlying premise
of the research is that failure modes ultimately correlate back to
the function that a particular component addresses. If the link
between failure mode and function can be established, then com-
ponent solutions for each function can be designed to eliminate
or significantly reduce a given failure mode. In this light, the fol-
lowing subsections introduce the concepts of failure modes and
component functionality, leading to the development of an ana-
lytical method for design use.

Failure Information for Design
An important issue in using design-aid techniques is in-

formation feedback about all potential failure modes and their
causes. Feedback of crucial failure information into the design
stage is essential in producing high-quality parts that must satisfy
stringent performance and safety requirements. Such is the case
with high-risk aerospace components. As shown in Figure 1,
a typical feedback loop into design must consider all phases
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Figure 1. INFORMATION FEEDBACK FROM DESIGN, TO PRODUCTION, TO OPERATION.

where failures and variations can be introduced, including de-
sign, manufacturing and assembly, tooling and fixture, and op-
erational considerations. The focus here is on operational con-
siderations that lead to unacceptable failure modes when these
components are placed in operation. This information is com-
monly gathered from experience and previous designs; their sig-
nificance is typically re-evaluated for each application, depend-
ing on the design, manufacturing and assembly, and operational
considerations. When designing a new product, or modifying
existing products for new environments, it is often up to the de-
signers to assess and draw conclusions about the similarity be-
tween different designs, components, and failure modes. To help
with this daunting task, this work aims to provide a means to sys-
tematically and correctly identify and eliminate potential failure
modes, based on the functionality of machinery components.

Mechanical Failures in Design The potential of me-
chanical failures is a crucial concern in design. Reliability, main-
tenance, and satisfactory performance of machines and systems
depend heavily upon understanding, recognizing, and prevent-
ing/eliminating mechanical failures (Collins and Hagan, 1976;
Mitchell, 1993; Smith, 1999). Mechanical failure may be de-
fined as any change in size, shape, or material properties of a
structure, machine, or machine component that renders it inca-
pable of satisfactorily performing its intended function (Collins,
1993). Success in designing competitive products while prevent-
ing premature mechanical failures can be achieved only by rec-
ognizing and evaluating all potential failure modes. To this end,
the designer must be acquainted with an array of failure modes
observed in the field, and with the conditions leading to these
failures.

In this work, failures are defined in terms of a basic set of
standard mechanical failure modes that all components will be
subject to during their lifetime. To define this vector of failures,
failure modes presented in Collins (Collins, 1993) are adopted,
summarized in Table 1. All new systems will be mapped to
match these standard modes.

Table 1. ELEMENTAL FAILURE MODES.

Main Category Sub Main Category Sub

Elastic Deformation force induced Impact fracture
temperature induced deformation

Yielding wear
Brinnelling fretting
Ductile rupture fatigue
Brittle fracture Fretting fatigue
Fatigue high-cycle wear

low-cycle corrosion
thermal Creep
surface Thermal relaxation
impact Stress rupture
corrosion Thermal shock
fretting Galling and seizure

Corrosion direct chemical attack Spalling
galvanic Radiation damage
pitting Buckling
intergranular Creep buckling
selective leaching Stress corrosion
erosion Corrosion wear
cavitation Corrosion fatigue
hydrogen damage Creep and fatigue
biological
stress

Wear adhesive
abrasive
corrosive
surface fatigue
deformation
impact
fretting

Failure Prevention To help with feedback from opera-
tion and production into design, it is crucial to provide design-
ers and manufacturing engineers with techniques they can use to
effectively account for the existing and potential failure modes
and mechanisms. At the design and development stages, stan-
dard reliability tools are used for a thorough coverage and under-
standing of all possible and potential failure modes, lengthening
the development time of such components considerably. At the
manufacturing stage, quality control techniques are used to in-
spect components (some at a 100% rate) to assure satisfactory
and safe operation, making the manufacturing of such compo-
nents costly and time-consuming (Carter, 1997; Henley and Ku-
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mamoto, 1992; Phadke, 1989). Despite these lengthy and costly
steps during production, failures still occur at an unacceptable
rate when components are placed in their operational states. The
increasing pressure in the aerospace industry to reduce the pro-
duction and development cycle and increase the life cycle of cru-
cial aircraft components, while keeping safety the number one
priority, requires more stringent steps during the development of
high-risk components.

There are several supporting techniques that are often
used by designers to account for potential failures (Carter,
1997). Examples (commonly used at NASA) are checklists,
FMEA/FMECAs, and FTAs. Checklists are listings of all rel-
evant failure modes and mechanisms. They act as reminders to
ensure that the design has been assessed as adequate to meet all
possible circumstances. Although often the only source of such
information, checklists are typically incomplete and do not pro-
vide the complete picture of the mechanisms for failure. A sys-
tematic method for drawing up an exhaustive list is lacking from
the literature (Carter, 1997). In other words, there is no “algo-
rithm” that enables one to draw up a comprehensive checklist for
a specified part. This results in checklists being unreliable design
tools.

FMEA (failure modes and effects analysis) and FMECA
(failure modes effects and criticality analysis) are tools used to
first identify each failure mode at some designated level (e.g.,
component, sub-assembly, machine), and then trace the effect
of the failure through all the higher levels of the hierarchy in
turn (Carter, 1997). It is used to establish whether each failure
mode has unacceptable consequences on the system as a whole.
The problem with this method is that, contrary to what the name
implies, FMEA does not tell the designers what to do at the low-
est level, if the consequences are unacceptable. While these
traditionally-used methods are effective for identifying failure
modes related to components, a common complaint is the dif-
ficulty in identifying system-wide failure modes (Bowles, 1998;
Eubanks et al., 1997; Henning and Paasch, 2000). Traditional
FMEA needs a systematic approach capable of capturing a wider
range of failure modes, applicable early in the design stage (Eu-
banks et al., 1997).

FTA (fault tree analysis) performs the reverse. It starts with
an undesirable top event and isolates possible causes at each suc-
cessive lower level of the hierarchy in order to establish the prime
cause(s). FTA is more powerful in the sense that it forces the
designers to consider all the causes of unacceptable top events.
However, the analysis is not pursued far enough, and the prime
causes are not revealed (Carter, 1997). Although a well-accepted
technique, large system-level fault trees are often difficult to
understand, and difficult to build due to the complex logic in-
volved (Henley and Kumamoto, 1992). The weakness of both
FMEA and FTA is that the basic sources of unacceptable behav-
ior cannot be identified (Carter, 1997).

Functional Modeling for Design
Functional modeling is a key step in the product design pro-

cess, whether original or redesign. By developing a formal the-
ory of functional modeling, the intent is to push functional mod-
eling into the realm of repeatable, and even computable, engi-
neering analysis. Stone et al. have had substantial success with
their functional model derivation and common functional lan-
guage as demonstrated by inter-institutional experimental results
(Stone and Wood, 2000; Stone et al., 2000). In this work, their
common functional language will be adopted for defining ele-
mental functions.

From Value Engineering to Functional Basis All
functional modeling begins by formulating the overall product
function. By breaking the overall function of the device into
small, easily solved sub-functions, the form of the device fol-
lows from the assembly of all sub-function solutions. The lack
of a precise definition for small, easily solved sub-functions casts
doubt on the effectiveness of prescriptive design methodologies
(Pahl and Beitz, 1988; Ullman, 1997; Ulrich and Eppinger, 1995)
among engineers in more analytical fields. For instance, within a
given methodology how does one reconcile different functional
models of a product generated by different designers? Typically,
such differences arise from semantics or poor identification of
product function. The development of a standard set of functions
and flows, referred to here as a functional basis, and a system-
atic approach to functional modeling offer the best case to erase
remaining doubt.

Much of the recent work on a functional basis stems from
the results of value engineering research that began in the 1940s
(Akiyama, 1991; Miles, 1972). Value analysis seeks to express
the sub-functions of a product as an action verb-object pair and
assign a fraction of a product’s cost to each sub-function. Sub-
function costs then direct the design effort (specifically, the goal
is to reduce the cost of high value sub-functions). However, there
is no standard list of action verbs and objects. Recognizing that a
common vocabulary for design was necessary to accurately com-
municate helicopter failure information, Collins et al. (Collins
and Hagan, 1976) develop a list of 105 unique mechanical func-
tions. Here, the mechanical functions are limited to helicopter
systems and do not utilize any classification scheme.

Function-based design methodologies have also pushed the
development of functional languages in order to provide a clear
stopping point in the functional modeling process and a consis-
tent level of detail. Pahl and Beitz (Pahl and Beitz, 1988) list five
generally valid functions and three types of flows, but they are at
a very high level of abstraction. Hundal (Hundal, 1990) formu-
lates six function classes complete with more specific functions
in each class in order to make function-based design computable.
Another approach uses the 20 subsystem representations from
living systems theory to represent mechanical design functions
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Table 2. CLASSES, FLOW TYPES, AND COMPLEMENTS.

Class Basic Subbasic Complements

Material Human Hand, foot, head ,etc.
Gas
Liquid
Solid

Signal Status Auditory Tone, Verbal
Olfactory
Tactile Temp, Pressure, Roughness
Taste
Visual Position, Displacement

Control

(Koch et al., 1994). Malmqvist et al. (Malmqvist et al., 1996)
compare the Soviet Union era design methodology known as the
Theory of Inventive Problem Solving (TIPS) with the Pahl and
Beitz methodology. TIPS uses a set of 30 functional descrip-
tions to describe all mechanical design functions (Altshhuller,
1984). Malmqvist et al. note that the detailed vocabulary of
TIPS would benefit from a more carefully structured class hi-
erarchy using the Pahl and Beitz functions at the highest level.
Kirschman and Fadel (Kirschman and Fadel, 1998) propose four
basic mechanical functions groups, but vary from the standard
verb-object sub-function description popular with most method-
ologies. However, this work appears to be the first attempt at
creating a common vocabulary of design that leads to common
functional models of products.

A Functional Basis for Design Building on the above
work, the concept of a functional basis is developed by Stone and
Wood (Stone and Wood, 2000; Stone et al., 2000) which signif-
icantly extends previous research (Little et al., 1997; Otto and
Wood, 1997). A functional basis is a standard set of functions
and flows capable of describing the mechanical design space.
The work expands the set of functions and groups them into
eight classes. This initial functional basis subsumes all other
classification schemes discussed above along with the 30 basic
sub-functions found in TIPS. The standard list of functional de-
scriptions is needed such that the matrices can be shared among
different engineers. Summarized in Tables 2, 3, and 4, the func-
tional basis is a vocabulary of function and flow words which
may be combined to form a functional description (Stone et al.,
2000). A functional description has a verb-object format where
the verb is selected from the function list in Table 4, and the ob-
ject is selected from the flow lists in Tables 2 and 3. The function
and flow sets are divided into different categorizations, i.e., class,
basic, sub-basic (or flow-restricted). Each successive categoriza-
tion allows greater levels of detail to be captured in the functional
description. Typically, the basic level is sufficient to convey the
elemental functions at the basic level.

Table 3. CLASSES, FLOW TYPES, AND COMPLEMENTS.

Class Basic Subbasic Bond Graph Complements
Effort analogy Flow analogy

Energy Human Force Motion
Acoustic Pressure Particle vel.
Biological Pressure Volumetric flow
Chemical Affinity Reaction rate
Electrical Elect. force Current
Electromagn. Optical Intensity Velocity

Solar Intensity Velocity
Hydraulic Pressure Volum. flow
Magnetic Magn. force Magn. flux rate
Mechanical Rotational Torque Angular vel.

Translational Force Linear vel.
Vibrational Amplitude Frequency

Pneumatic Pressure Mass flow
Radioactive Intensity Decay rate
Thermal Temperature Heat flow

Paper Focus
In this work, tools are sought to make use of known failure

modes and the required functionality of the components, across
components and systems. It is the authors’ view that components
have a ”commonality” they share at some basic level in terms of
their failure modes and functionality. This basic level of com-
monality is explored in this work by decomposing the knowledge
about failures and functionality via matrix manipulations. Once
the common modes of failures at the basic levels are determined,
a larger family of components/systems can be considered. Us-
ing this generalization, this work proposes to formalize the pro-
cess of feeding failure and reliability information into the design
and manufacturing phases (Stone and Wood, 2000; Stone et al.,
2000; Tumer et al., 2000a; Tumer and Huff, 2000). In this pa-
per, the initial development of such a function-failure method is
presented. The paper first presents the theoretical basis for the
proposed method, followed by a detailed demonstration of the
mechanics of the method by using a simple example in rotating
machinery. Future work will establish this method as a design
tool for real-world applications, including the domain of heli-
copter failures.

THEORETICAL BACKGROUND
The method proposed in this work is based on two meth-

ods previously presented by the authors. The first method was
presented by Tumer et al. (Tumer et al., 2000a; Tumer et al.,
2000b) to extract high-variance modes from product surface pro-
files. This method is extended in this work to isolate the failure
modes with the highest variance, to determine tradeoffs during
component development. The second method was presented by
Stone et al. (Stone and Wood, 2000; Stone et al., 2000) to derive
the similarity between different designs based on functionality,
and used to provide a repository for designers. This method is
extended in this work to the domain of failure detection, to cap-
ture failure-function similarity in components.
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Table 4. FUNCTIONS CLASSES, BASIC FUNCTIONS AND SYNONYMS.

Class Basic Flow restricted Synonyms

Branch Separate Switch, Divide, Release, Detach, Disconnect, Disassemble, Subtract
Remove Cut, Polish, Sand, Drill, Lathe

Refine Purify, Strain, Filter, Percolate, Clear
Distribute Diverge, Scatter, Disperse, Diffuse, Empty, Absorb, Dampen, Dispel, Resist, Dissipate

Channel Import Input, Receive, Allow, Form Entrance, Capture
Export Discharge, Eject, Dispose, Remove
Transfer Transport Lift, Move

Transmit Conduct, Convey
Guide Translate Direct, Straighten, Steer

Rotate Turn, Spin
Allow DOF Constrain, Unlock

Connect Couple Join, Assemble, Attach
Mix Combine, Blend, Add, Pack, Coalesce

Control Actuate Start, Initiate
Magnitude Regulate Control, Allow, Prevent, Enable/Disable, Limit, Interrupt, Valve

Change Condition Increase, Decrease, Amplify, Reduce, Magnify, Normalize, Multiply, Scale, Rectify, Adjust
Form Compact, Crush, Shape, Compress, Pierce

Convert Convert Transform, Liquefy, Solidify, Evaporate, Condense, Integrate, Differentiate, Process
Provision Store Contain, Collect, Reserve, Capture

Supply Fill, Provide, Replenish, Expose
Extract

Signal Sense Perceive, Recognize, Discern, Check, Locate
Indicate Mark, Display
Measure Calculate

Support Stop Insulate, Protect, Prevent, Shield, Inhibit
Stabilize Steady
Secure Attach, Mount, Lock, Fasten, Hold
Position Orient, Align, Locate

High-Variance Mode Derivation
Tumer et al. (Tumer et al., 2000a; Tumer et al., 2000b)

present a methodology to extract variation and defect features
from machine component surfaces, providing manufacturing and
design engineers with a mathematical tool to understand the var-
ious components of product surfaces and improve quality. The
Karhunen-Loève (KL) transformation uses a covariance matrix
and decomposes it into eigenvalues and eigenvectors, as well as
weights to extract major modes and their significance, similar to
Principal Components Analysis. For manufacturing surfaces, the
modes (eigenvectors) correspond to the major components of the
surface variation, decomposed into form, waviness, and rough-
ness errors. The variation pattern of these individual modes can
then be monitored by means of the coefficient vectors (weights).
The following is a brief presentation of the theory used for this
method.

For anm� n input matrixX,whose columns consist of the
variables under study, and whose rows correspond to each obser-
vation, then�n covariance matrix is computed by first comput-
ing the 1�n mean vectorX, then removing the mean vector from
each of them observations, and forming the covariance matrix
ΣX = X0

TX0=(m�1) (m�1 is the rank of then�n symmetric
covariance matrix ifm< n, losing one additional degree of free-
dom due to the removal of the mean vector) (Bendat and Piersol,
1986; Fukunaga, 1990).

Assuming the covariance matrix is positive definite
(det 6= 0), it will result in n nonnegative eigenvalues, andn

corresponding eigenvectors. A semi-positive definite symmetric
matrix will result in k nonnegative eigenvalues, wherek is the
rank of the matrix, determined by the number of independent
rows. In this case, ifm< n, and losing one degree of freedom
by removing the mean vector, the rankk of the covariance matrix
equalsm�1.

The eigenvalues and eigenvectors of the covariance matrix
are computed using the characteristic equation of theΣX matrix,
namelyjΣX�λI j=0, with the eigenvectors corresponding to two
different eigenvaluesλi andλ j being orthogonal. This equation
can be rewritten in matrix form asΣX �V = V�D, subject to
the orthornormality constraintVT �V = I , with the following
eigenvalue (diagonal) and eigenvector matrices:

D =

2
4

λ1 0
:::

0 λn

3
5 ; V = [V1V2:::Vn]:

The eigenvectorV can be used as the transformation matrix to
transform then-dimensionalX0 to another vectorY using the
orthogonal transformationY = VT �X0, where the covariance
matrix ofY is D (from ΣY = VT �ΣX�V = D).

Product-Functionality Similarity Derivation
Stone et al. (Stone and Wood, 2000; Stone et al., 2000)

present a methodology for transforming customer need rankings
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and function structures into quantitative models, offering design-
ers a novel way to archive and communicate product design
knowledge. Specifically, they use matrix manipulations to ex-
tract product similarity using a product repository which groups
products together based on functionality and customer needs.
Scaled customer need rankings are first mapped to sub-functions
of the product function structure in the form of a product vector
φ. An m�n product-function matrixΦ is then formed to create
a product repository to archive product design knowledge. Each
element of the product-function matrix,φi j is the cumulative cus-
tomer need rating for theith function of thejth product. To com-
pensate for variations due to different sources of information, the
product-function matrix is normalized across the entire product
space. The normalized product-function matrixN, has elements
νi j = φi j

η̄
η j

µj
µ̄ . Here,η̄ is the average customer need rating,η j is

the customer rating for thejth product,µj = ∑m
i=1H(φi j ) is the

number of functions in thejth product (H is the Heaviside func-
tion), andµ̄ is the average number of functions (n is the num-
ber of products andm is the total number of sub-functions for
all products.) Using such a method, a new product’s functional
model can be used to find similarities so that existing knowledge
can guide its development. This is accomplished by computing
the product-product matrix using the renormalized matrixN̂ (so
that the norm is equal to 1), defined asΛ̂ = N̂TN̂.

FUNCTION-FAILURE METHOD: A DESIGN TOOL
In this paper, the ideas of extracting ”high-variance modes”

and ”product similarity” are extended to failure detection for a
family of aerospace components and products. A simple exam-
ple problem using a rotating machinery simulator model is used
in this paper to show proof-of-concept. Future work is currently
underway to apply this method to the domain of helicopter fail-
ures and functions.

Preliminary Definitions
Let C be anm�1 vector of subsystems and/or components

for the application domain under study (e.g., helicopter, aircraft,
spacecraft). LetF be ann�1 vector of failures commonly found
in that application domain. LetE be ther � 1 vector contain-
ing all elemental functions for the components under study. To
represent failure information, such individual vectors (contain-
ing information on failure modes, functionality and components)
are weaved together into a matrix of information. To begin, con-
sider failure information which is typically recorded with respect
to components or subsystems. This information can be arranged
succinctly using a component vectorC and a failure vectorF
with elements indicating the failure modes that can occur for the
component. Them component vectors are aggregated together
to form CF, them�n component-failure matrix, wheren is the
total number of failure modes occuring across allmcomponents.

Figure 2. USING A FUNCTIONAL MODEL TO IDENTIFY POTENTIAL

FAILURE MODES.

Similarly, components can be described in terms of their
functionality. Here, an elemental function vectorE is constructed
for each component with elements that indicate the functionality
of the component. Aggregating each vector ofr functions, to-
gether for them components (represented in the columns), cre-
ates ther � m function-component matrixEC, wherer is the
total number of functions necessary to describe all of themcom-
ponents. The function-component matrix is closely related to
the product-function matrixΦ, reviewed above, though this time
functionality of components rather than that of the entire prod-
uct, is considered. Thus, theEC matrix may be constructed as a
binary matrix with a 1 indicating the component solves a certain
function and a 0 indicating the opposite, or the elements ofEC
may be weighted to include additional information.

Once the component-failure and function-component matri-
ces are computed, the relationship between function and failure
can be computed as:EF=EC�CF. Thisr�n matrix, called the
function-failure matrix, relates the failure modes to the elemen-
tal functions. Each elementi j indicates whether any component
solving functioni has ever failed by failure modej. This in-
formation is useful when designing or redesigning components,
offering failure modes to guard against during the design phase.
For example, a new design or redesign of an existing component
might proceed as follows. A component’s functional model is
specified as a vector. That vector is multiplied by the function-
failure matrix,EF, to produce a component-failure mode vec-
tor. This vector then indicates potential failure modes the com-
ponent could experience and the likelihood of occurrence for
each failure mode (the larger the failure mode value, the mode
likely). The designer is then able to design out the identified fail-
ure modes during the conceptual design stage. This approach is
shown schematically in Figure 2.
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Figure 3. A DESKTOP ROTATING MACHINERY TESTRIG.

Table 5. COMPONENT-FAILURE MATRIX EXAMPLE (CF).

F1 F2 F3 F4 F5

C1 : gear 1 1 0 1 1
C2 : bearing 1 0 1 1 0
C3 : sha f t 0 1 0 0 1

Application: Rotating Machinery Example
Consider the design of a simple rotating machinery system,

consisting of a shaft attached to a motor by means of a coupling,
supported by two sets of ball bearings, which drives a gear box
via two belts, which in turn drives a load. A picture of a simple
rotating machinery system is shown in Figure 3. This system
represents the Machinery Fault Simulator located at NASA Ames
Research Center, whose purpose is to simulate vibrational fault
situations (Tumer and Huff, 2000). This machinery will serve
as a preliminary test bed to demonstrate how the function-failure
matrix can work. More realistic applications are currently being
attacked, starting with helicopters. In the case of a helicopter,
the load would be equivalent to driving the rotor blades with an
epicyclic transmission gearbox. The input to the transmission
would be equivalent to a shaft, supported by bearings, and driven
by the helicopter engine (Huff et al., 2000; Huff et al., 2001).

For this simple example, three types of components are con-
sidered: namely, the shaft, gears, and bearings. These compo-
nents can be subject to elementary failure modes, described in
Table 1, that need to be considered at the early design stages.
Selecting a subset from these failure modes, these components
are assumed to be subject to wear, fatigue, corrosion, fretting,
and impact failure modes. Table 5 presents an aggregated matrix
of failures and components, with 1’s representing an occurrence
of a failure for a given component, and 0’s representing non-
occurrence. The failure modes are labeled as follows:F1 is wear,
F2 is fatigue,F3 is corrosion,F4 is fretting, andF5 is impact.
The components are labeled as follows:C1 is a gear,C2 is a bear-
ing, andC3 is the shaft. The failure modes represent the variables
(columns) and the components represent the various observations
(rows).

Finally, functional descriptions are found using the func-

Table 6. FUNCTION-COMPONENT MATRIX EXAMPLE (EC).

C1 : gear C2 : bearing C3 : sha f t

E1 : change m:e: 1 0 0
E2 : guide m:e: 1 0 1
E3 : trans fer m:e: 1 0 1
E4 : position m:e: 0 1 0
E5 : stabilize m:e: 0 1 0

tional basis of Tables 2, 3, 4. The function vectors for each com-
ponent are aggregated together to form the function-component
matrixEC (with r = 5 andm= 3) shown in Table 6. Once again,
the components under consideration are the gear,C1, bearing,C2,
and shaft,C3. The elemental functions these components have to
satisfy are selected asE1: change mechanical energy,E2: guide
mechanical energy,E3: transfer mechanical energy,E4: position
mechanical energy, and,E5: stabilize mechanical energy (see Ta-
ble 4 for basic function definitions.)

Capturing Modes and Variation for Design Tradeoffs
Using the matrices introduced above, the principal modes of

variation in the data are derived here for the case of the simple
example, providing designers with a means to make tradeoffs at
the early stages of design.

Deriving Principal Modes and Weights The covari-
ance matrices for the aggregated component-failure, function-
component, and function-failure matrices, are referred to as
ΣCF, ΣEC, and ΣEF throughout the rest of this discussion.
To demonstrate the fundamentals of the method, them� n
component-failure matrix,CF is selected here as an example.
The component-failure matrix is composed ofn failure modes in
its columns (variables), andm components in its rows (observa-
tions). LetΣCF = CFT �CF=(m�1) be the covariance matrix
of the component-failure matrixCF. ΣCF is ann� n symmet-
ric matrix (n is the number of elemental failure modes). In the
following, the principal mode derivation presented above is ap-
plied to the rotating machinery example, by applying Principal
Components Analysis (PCA) to the input matrixCF.

Application to Rotating Machinery Test Rig From
Table 5, the input matrixCF, with m= 3 andn = 5, is defined
as:

CF =

2
4

1 1 0 1 1
1 0 1 1 0
0 1 0 0 1

3
5 ;

whose mean vector is computed as:

CF =
�

0:6667 0:6667 0:3333 0:6667 0:6667
�
:
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Using the centered input vector isCF0 = CF�CF, the covari-
ance matrixΣCF is computed as:

ΣCF =

2
66664

0:3333�0:1667 0:1667 0:3333�0:1667
�0:1667 0:3333�0:3333�0:1667 0:3333

0:1667�0:3333 0:3333 0:1667�0:3333
0:3333�0:1667 0:1667 0:3333�0:1667

�0:1667 0:3333�0:3333�0:1667 0:3333

3
77775

Using Matlab, the PCA script results in the following outputs:

pc=

2
66664

0:3943�0:5869 0:0425 0:7058 0:0000
�0:4792�0:3220�0:5750 0:0347�0:5787

0:4792 0:3220�0:7877 0:0475 0:2095
0:3943�0:5869�0:0425�0:7058�0:0000

�0:4792�0:3220�0:2128 0:0128 0:7882

3
77775

sc=

2
4
�0:2163�0:7133�0:0000 0:0000�0:0000

1:2214 0:2527�0:0000�0:0000 0:0000
�1:0050 0:4606�0:0000�0:0000�0:0000

3
5

lat =

2
4

1:2743
0:3924
0:0000

3
5

The pc matrix represents the eigenvectors of the 5� 5 co-
variance matrix, providing the coefficients of the new coordinate
system described by the principal axes, with respect to the old
coordinate system described by the variablesF1, F2, etc. The
columns of this matrix correspond to each of the principal com-
ponents, and the values in each row represent the coordinate
based on the original variablesFi. The principal axes give the di-
rection of the new coordinate system defined by the eigenvectors
of the covariance matrix, corresponding to the directions with
maximum variability, and provide a simpler and more parsimo-
nious description of the covariance structure (Johnson and Wich-
ern, 1992). An illustrative schematic of the coordinate transfor-
mation is shown in Figure 4 for a case with three variablesF1,
F2, andF3 only.

Based on thepcmatrix, the first principal component can be
used to describe the original variables in the new (transformed)
coordinate system as a linear combination of all five failure
modes as follows:pc1 = 0:3943F1�0:4792F2+0:4792F3+
0:3943F4�0:4792F5: Using this relationship, the designer can
deduce thatF2, F3 andF5 have a higher effect thanF1 andF4,
and thatF2 & F3 have an equal but contrasting effect on the

F2

a

F1

F3

b

PC1 = a F1+ b F2 + c F3

c

Figure 4. COORDINATE TRANSFORMATION USING PCA.

first principal component, and so on. The eigenvalues of the co-
variance matrix are represented in thelat vector. Note that with
an eigenvalue of 1.27, the first principal component accounts for
76:46% of the total variance in the data, and hence is sufficient
to represent the failure information in a simpler (more parsimo-
nious) manner, and can be considered as a model of the sam-
ple data. The second principal component has an eigenvalue of
0.3924, and accounts for the remaining 23:54% of the variance.
(There are only two eigenvalues since the rank of the covariance
matrix is m� 1 = 2. The rest of the eigenvalues belong to the
null space.)

While the eigenvectors of then� n covariance matrix are
presented in thepc matrix, the scores in thesc matrix repre-
sent the weights for the eigenvectors on each of the observations
(CF0� pc). The scores are then interpreted as corresponding to
the pattern of the variation for each eigenvector over the different
machinery components (Ci) under study. The first column of the
scmatrix represents the first principal component, with each row
corresponding to each componentC1,C2, andC3 (observations).
The second column corresponds to the second principal compo-
nent. The remaining columns belong to the null space, since the
rank of the covariance matrix in this case wasm� 1 = 2. The
variance of the scores for the first principal component (first col-
umn ofsc) equals the first eigenvalue (λ1 = 1:27), and the vari-
ance of the scores for the second principal component equals the
second eigenvalue (λ2 = 0:3924). Using this example, for the
first componentC1 (gear), the first principal mode has a weight
of�0:2163, whereas for the second componentC2 (bearing), the
same principal mode has a weight of 1:2214, hence indicating a
stronger influence on this component.

Use as a Potential Design-Aid Tool The transformed
representation of the failure information in terms of a principal
mode can be used by designers to decide on tradeoffs in terms of
failures. For example, failure modesF2, F3 andF5 have a more
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significant effect on the overall performance and quality of the
product than failure modesF1 andF4, as indicated by the first
column of thepc matrix. Depending on the application of the
component and its functionality, the designer might want to pay
closer attention to the first three modes, and not be as concerned
with the last two modes. For example, in this case, the bearing
componentC2 depends more heavily on these three modes, as
indicated by the first column of thesc matrix. Tradeoffs are a
common occurrence in design. A means to analytically decide
on tradeoffs can result in significant savings in time and cost.
Similar conclusions can be drawn by starting with the function-
component and the function-failure matrices.

Capturing Similarity for Design and Redesign
The matrices described in this paper represent convenient

ways to mathematically capture failure mode and function data
for components. Additional useful design information may be
obtained through matrix manipulations of the data. The result-
ing similarity matrices (equivalent to covariance matrices from
above) provide tools for designers to assess and design against
the impact of potential failure modes.

Deriving Similarity Matrices Similarity matrices can
be derived in several ways, depending on the purpose of
the designer. For example, taking the transpose of the
function-component matrix and post multiplying it by function-
component matrix yields anm� m symmetric component-
component matrix. Mathematically, the component-function
similarity matrix is given by: Λ̂EC = EC

T
� EC, whereEC

is the normalized function-component matrix with each col-
umn normalized to unity for convenience. Each elementi j of
the component-function matrix indicates the similarity between
componenti and componentj based on elemental functions.
That is, if componenti is functionally similar to componentj,
then elementλi j will have a value in(0;1]. Components that
are completely similar with themselves have a similarity value
of 1 due to the normalization of the function-component matrix.
Likewise, components that share no functions in common will
have a similarity value of 0. Similar derivations can be achieved
using the remaining matrices, as demonstrated below.

Application to Rotating Machinery Test Rig Using
theCF andEC matrices from above, the function-failure matrix
can be computed asEF = EC�CF, which gives:

EF =

2
66664

1 1 0 1 1
1 2 0 1 2
1 2 0 1 2
1 0 1 1 0
1 0 1 1 0

3
77775
;

where the rows represent the elemental functionsEi and the
columns represent the failure modesFj . Observing the function-
failure matrix, one sees that function pairsguide m.e.-transfer
m.e.andposition m.e.-stabilize m.e.experience the same failure
modes. Also, the failure modesfatigueand impactoccur more
frequently for the functionsguide m.e.andtransfer m.e.. Though
this is a limited example, the function-failure data can be used to
identify traditionally occurring failure modes when only a com-
ponent’s function is known and use that knowledge to design out
the potential failure.

Additional design observations can be made by computing
the similarity matrices. First, the component-function similar-
ity Λ̂EC is calculated from the function-component matrix after
normalizing each column to unity as follows:

EC =

2
6666664

p
3

3 0 0
p

3
3 0

p
2

2p
3

3 0
p

2
2

0
p

2
2 0

0
p

2
2 0

3
7777775
;

and,

Λ̂EC = EC
T
�EC =

2
4

1:000 0:000 0:816
0:000 1:000 0:000
0:816 0:000 1:000

3
5 :

The component-function similarity matrix identifies that compo-
nents 1 and 3 (i.e., the gear and the shaft) are similar in function
(in terms of failure modes) when one is projected onto the other.
This indicates that the gear could possibly be used as a replace-
ment for the shaft (or vice versa) and that solution principles used
in the gear could be used in a redesign of the shaft (again, the
converse is also true).

Next, the component-failure similarity matrix is calculated
from the component-failure matrix (non-normalized) as:

ΛCF = CF�CFT =

2
4

4 2 2
2 3 0
2 0 2

3
5 :

Note that the diagonal simply returns the count of failure modes
each component experiences. Component 1 (the gear, from look-
ing at column 1 or row 1) shares two failure modes in common
with each of the other components, while components 2 and
3 (bearing and shaft) have no common failure modes (as indi-
cated by the zeros in the off-diagonals). Consider components
1 and 3 which are functionally similar (with a similarity index
of 0.816) and share two failure modes in common, as seen from
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the component-failure matrix. If a design solution for one com-
ponent is found that eliminates the common failure modes, then
that solution will most likely be applicable to the remaining com-
ponent as well.

Finally, the failure-componentsimilarity matrix is calculated
as:

ΛFC = CFT �CF =

2
66664

2 1 1 2 1
1 2 0 1 2
1 0 1 1 0
2 1 1 2 1
1 2 0 1 2

3
77775
:

For this set of components and recorded failures, the failure
modes F1-F4 (wear and fretting) and F2-F5 (fatigue and impact)
tend to occur on the same component most frequently. Other
combinations of failure modes are possible, but not as likely.
Failure modes F2-F3 (fatigue and corrosion) and F3-F5 (corro-
sion and impact) have no incidence of occurring on the same
component.

Use as a Potential Design-Aid Tool The component-
function similarity matrix provides designers with a tool to iden-
tify possible replacement components that solve similar func-
tions. It also provides a way to search and rank component solu-
tions that are similar in function and use design by analogy tech-
niques to embody a design. One possible use for the component-
function and component-failure similarity matrices is to identify
component solutions that prevent certain failure modes. If, be-
tween functionally-similar components A and B (as determined
by Λ̂EC), component B does not experience all of the same fail-
ure modes as component A (as determined byΛCF), then there
is some characteristic of component B that could be incorporated
into A to improve its performance.

Finally, the failure-component similarity matrix (ΛFC)
yields insight into possible interactions of two or more fail-
ure modes, with elements indicating failure mode combinations
which occur across components. It can be used to direct compo-
nent remedies that will eliminate more than one failure mode. In
terms of current FMEA and FTA techniques, knowledge of fail-
ure modes that often occur interactively would give designers a
more complete list of possible product failures to investigate.

CONCLUSIONS AND FUTURE WORK
In this paper, a function-failure method was introduced to

take advantage of the link between failure modes and function-
ality of components. The method is meant to provide designers
with an analytical means to make systematic tradeoff and design
decisions to avoid potential failure modes. A crucial piece of
the work is the inherent link between functionality and failure

modes. The method is applied here to a simple example using
a rotating machinery test rig, to illustrate its potential. The pur-
pose of developing such analytical method is to meet the tight
performance and safety requirements imposed on designers for
critical NASA applications. As an ongoing collaborative project
between NASA Ames and The University of Missouri-Rolla, the
function-failure method will be applied to a more realistic exam-
ple using helicopter failure data and design specifications (Huff
et al., 2001). This initial investigation of helicopter failures will
be followed by a thorough analysis of actual failures collected
from accident data (Harris et al., 2000). A mapping of the as-
signed functions onto the basic set of functions presented in this
work has begun. This mapping, accompanied by the standard
failure modes described in Table 1, will be used to start analyz-
ing the helicopter failure data. Such an analysis is essential in
establishing the function-failure method presented in this paper
as a viable and useful design-aid tool.
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